On the numerical index of polyhedral Banach spaces
نویسندگان
چکیده
منابع مشابه
Real Banach Spaces with Numerical Index 1
We show that an infinite-dimensional real Banach space with numerical index 1 satisfying the Radon– Nikodỳm property contains l1. It follows that a reflexive or quasi-reflexive real Banach space cannot be re-normed to have numerical index 1, unless it is finite-dimensional.
متن کاملTwo-dimensional Banach Spaces with Polynomial Numerical Index Zero
We study two-dimensional Banach spaces with polynomial numerical indices equal to zero.
متن کاملA subsequence characterization of sequences spanning isomorphically polyhedral Banach spaces
Let (xn) be a sequence in a Banach space X which does not converge in norm, and let E be an isomorphically precisely norming set for X such that
متن کاملBanach Spaces of Bounded Szlenk Index Ii
For every α < ω1 we establish the existence of a separable Banach space whose Szlenk index is ω and which is universal for all separable Banach spaces whose Szlenkindex does not exceed ω. In order to prove that result we provide an intrinsic characterization of which Banach spaces embed into a space admitting an FDD with upper estimates.
متن کاملBanach Spaces Having the Radon-nikodỳm Property and Numerical Index 1
Let X be a Banach space with the Radon-Nikodỳm property. Then, the following are equivalent. (i) X has numerical index 1. (ii) |x∗∗(x∗)| = 1 for all x∗ ∈ ex(BX∗ ) and x∗∗ ∈ ex(BX∗∗ ). (iii) X is an almost-CL-space. (iv) There are a compact Hausdorff space K and a linear isometry J : X → C(K) such that |x∗∗(J∗δs)| = 1 for all s ∈ K and x∗∗ ∈ ex(BX∗∗ ). If X is a real space, the above conditions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2019
ISSN: 0024-3795
DOI: 10.1016/j.laa.2019.04.024